為了對電磁流量計抗干擾技術加以探討,首先必須對電磁流量計干擾噪聲產(chǎn)生的物理機理和特性加以分析研究,從而根據(jù)各種干擾噪聲的特性采用相應的抗干擾對策,以提高電磁流量計抗干擾的能力。
電磁流量計是基于導電性流體在磁場中運動所產(chǎn)生的感應電勢來推算流體流量的測量儀表,其基本工作原理是電磁感應定律。因此電磁耦合靜電感應是電磁流量計干擾噪聲的首要來源;被測流體介質特性產(chǎn)生的電化學干擾噪聲是電磁流量計干擾燥聲的第二來源;電磁流量計供電電源的電壓和頻率波動等電源干擾噪聲是電磁流量計干擾噪聲的第三來源。以上三類干擾噪聲的來源、機理、特性不同。對電磁流量計的影響方式不同,相應采用的抗干擾措施也不同。作者結合雙頻矩形波勵磁智能電磁流量計的研究工作,著重就智能電磁流量計抗干擾技術加以探討,提出一些抗干擾的對策,以供智能儀器研究設計參考。
1、工頻干擾噪聲
工頻干擾噪聲是由電磁流量傳感器勵磁繞組和流體、電極、放大器輸入回路的電磁耦合,另外電磁流量計工作現(xiàn)場的工頻共模干擾,其三供電電源引入的工頻串模干擾等,其產(chǎn)生的物理機理均是電磁感應原理。首先就電磁流量傳感器勵磁繞組和流體、電極、放大器輸入回路的電磁耦合產(chǎn)生的工頻干擾對電磁流量計工作影響zui大,而且在不同的勵磁技術下其表現(xiàn)的形態(tài)、特性不同,因而采取抗干擾措施也不同。
2、流體介質特性產(chǎn)生的電化學干擾噪聲
電化學極化電勢干擾是由于電極感生電動勢在兩極極性不同而導致電解質在電極表面極化產(chǎn)生。雖然采用正負交變勵磁磁場能顯著減弱極化電勢的數(shù)量級,但不能根本上*消除極化電勢干擾。其特性于流體介質的性質、電極材料性質、電極的外形尺寸形狀有關,具有變化緩慢,數(shù)量級不大等特點,因此選擇合適的電極材料(如碳化鎢),設計*的電極形狀的尺寸是減小極化電勢的有效方法之一;另外采用正負兩極交變的矩形波勵磁技術配合微處理器同步寬脈沖采樣技術,到用微處理器運算功能前后兩次采樣值相減消除流量信號電勢中的極化電勢干擾。
泥漿干擾是在測量泥漿、纖維漿等液固兩相導電性流體流量時,固體顆?;蛘邭馀莶吝^電極表面時,電極表面的接觸電化學電勢突然變化,電磁流量傳感器輸出信號出現(xiàn)尖峰脈沖狀干擾噪聲。在勵磁頻率較低時,泥漿干擾的數(shù)量級較大,高頻時干擾數(shù)量級較小,具有1/f的頻譜特性。提高抗泥漿干擾的能力必須采用較高頻率的矩形波勵磁,以提高電磁流量傳感器輸出的信噪比,但會犧牲電磁流量計的零點穩(wěn)定性。另外也可采用流量信號變化率限制方法以剔除脈沖干擾對電磁流量計的影響,但會犧牲儀表的響應速度。
流體流動噪聲是在測量低導率液體(100vs/cm以下)流體流量時,電極的電化學電勢定期波動,產(chǎn)生隨流量增加而頻率增加的隨機干擾噪聲,具有類似泥漿干擾的1/f頻譜特性,因此提高勵磁頻率有助于降低流體流動噪聲的數(shù)量級,以提高電磁流量傳感器測量低導電率流體流量的信噪比。
3、供電電源性干擾
電磁流量計一般都采用工頻交流電源供電,其電源電壓的幅值和頻率的變化都會給電磁流量計帶來電源性干擾噪聲。對電源電壓的幅值變化,因采用多級集成穩(wěn)壓,一般而言電源電壓的幅值變化對電磁流量的測量精度影響不大。當電源電壓的頻率波動時,雖然其波動范圍有限,但對電磁流量計測量精度影響較大。在智能矩形波勵磁電磁流量計中采用寬脈沖采樣技術,其脈沖寬度為工頻周期的整數(shù)倍,具同步于工頻周期,以*消除工頻干擾,但前提條件是工頻噪聲干擾基本不變。當供電電源頻率波動時,流量信號采樣時使前后的工頻噪聲不能*相同,雖然采用同步勵磁技術、同步采樣技術仍然不能*消除工頻干擾噪聲,必須采用相應的頻率補償技術,使勵磁電流、采樣脈沖,A/D 轉換同步于頻率的變化。
特別聲明:以上內容(如有圖片或視頻亦包括在內)為自媒體平臺“機電號”用戶上傳并發(fā)布,本平臺僅提供信息存儲服務
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of JDZJ Hao, which is a social media platform and only provides information storage services.